

Year 12 Physics Curriculum Overview

Rationale: The Year 12 Biology curriculum is designed to further explore and investigate Physics by building a mind-set that allows skills to be continuously developed. Students will study and experience modules such as particles and radiation, waves, electricity, and forces and motion. In doing so, pupils will develop their practical, numeracy and investigative skills.

Term/Length of Time	Outline	Assessment/Teacher Feedback Opportunities	Homework and Literacy resources	
Section 1 27 lessons including assessments and feedback	 <u>Particles and radiation</u> This section introduces students both to the fundamental properties of matter, and to electromagnetic radiation and quantum phenomena. We begin with this topic to provide a new interest and knowledge dimension beyond GCSE. Through a study of these topics, students become aware of the way ideas develop and evolve in physics. They will appreciate the importance of international collaboration in the development of new experiments and theories in this area of fundamental research. <u>Skills</u> Use of prefixes for small and large distance measurements. Detection of gamma radiation. The PET scanner could be used as an application of annihilation. Demonstration of the photoelectric effect using a photocell or an electroscope with a zinc plate attachment and UV lamp. Observation of line spectra using a diffraction grating. 	Matter and radiation and quantum phenomenon end of topic assessments in the style of exam questions Written and verbal feedback given throughout module through in-class activities and homework.	 Homework is set weekly and contains a mixture of recall exam-style questions as well as more detailed application based exam style questions. All homework is reviewed with at least one detailed FAR (Feedback, Action, Response) marked by the teacher approximately once every 2 weeks Optional homework tasks and Literacy resources: SoL on science shared area, including PowerPoints, details of practical investigations, worksheets, revision resources, a range of AFL (assessment for learning) activities, research based tasks, model answers, short answer questions, exam questions, mark schemes, examiner's reports as well as homework. Physics offers many opportunities to develop and extend students' literacy skills. There is a large amount of new, subject-specific vocabulary, and so each unit includes a PLC (Personnel Learning checklist) which students will engage with throughout the unit. Students will use texts to find out information for themselves, using the functional layout of such texts, including index, contents and glossary sections of text books used in class, and 	

	Demonstration using an electron diffraction		also at home in an online format. Students will also		
	tube.		review and connect information within topics.		
Section 2		Waves and Optics end of			
22 lessons	Waves	topic assessments in the	Useful websites:		
including	GCSE studies of wave phenomena are extended	style of exam questions			
assessment	through a development of knowledge of the		https://www.physicsandmathstutor.com/		
and	characteristics, properties, and applications of	Written and verbal	https://senecalearning.com/en-GB/		
feedback	travelling waves and stationary waves. Topics	feedback given throughout	https://www.youtube.com/c/MalmesburyEducation		
	treated include refraction, diffraction, superposition	module through in-class	https://www.aqa.org.uk/subjects/science/as-and-a-		
	and interference.	activities and homework.	level/physics-7407-7408		
			https://www.savemyexams.co.uk/a-		
	Skills		level/physics/aqa/17/revision-notes/		
	Laboratory experiment to determine the speed of sound in free air using direct				
	timing or standing waves with a graphical		Reading list:		
	analysis.				
	 Students investigate the factors that 		1. A Brief History of Time - Stephen Hawking		
	determine the speed of a water wave.		2. Surely You're Joking Mr Feynman: Adventures		
	Investigation of two-source interference		of a Curious Character - Ralph Leighton and		
	with sound, light and microwave radiation.		Richard Feynman		
	 Investigation of interference effects to 		3. Blackholes and Timewarps: Einstein's		
	include the Young's slit experiment and		Outrageous Legacy - Kip Thorne		
	interference by a diffraction grating.	Forces in equilibrium,	4. The First Three Minutes - Steven Weinberg		
Section 3		Motion in a Straight Line,	5. Six Easy Pieces - Richard P. Feynman		
22 lessons	Mechanics and materials	Newton's Laws of Motion,	6. Seven Brief Lessons on Physics - Carlo Rovelli		
including	Vectors and their treatment are introduced	Fore and Momentum,	7. Mr Tompkins in Paperback – George Gamow		
assessment	followed by development of the student's	Work, Energy and Power,	8. Why Does E=mc ² ? - Brian Cox and Jeff		
and	knowledge and understanding of forces, Newton's	and Materials end of topic	Forshaw		
feedback	laws, energy and momentum. The section continues	assessments in the style of	9. Does God Play Dice? - Ian Stewart		
	with a study of materials considered in terms of	exam questions	10. A Short History of Nearly Everything - Bill Bryson		
	their bulk properties and tensile strength.		11. Invention and Evolution: Design in Nature and		
		written and verbal	Engineering – Michael French		
	<u>Skills</u>	Teedback given throughout	12. Losmos – Carl Sagan		

	 Investigation of the conditions for equilibrium for three conlaper forces acting 	module through in-class activities and homework.	 13. Moondust: In Search of the Men Who Fell to Earth - Andrew Smith 14. Quantum Theory Cannot Hurt You:
	 at a point using a force board. Distinguish between instantaneous velocity 		Understanding the Mind-Blowing Building Blocks of the Universe - Marcus Chown
	 and average velocity. Measurements and calculations from displacement-time, velocity-time and acceleration-time graphs. 		 A Short History of Nearly Everything - Bill Bryson Thing Explainer: Complicated Stuff in Simple Words - Randall Munroe
	 Calculations involving motion in a straight line. Determination of g by a freefall method. Students can apply conservation of momentum and rate of change of 		
	 momentum to a range of examples. Estimate the volume of an object leading to an estimate of its density. 		
Section 4 22 lessons including assessment	<u>Electricity</u> This section builds on and develops earlier study of these phenomena from GCSE. It provides		
and feedback	at an early stage in the course and lays the groundwork for later study of the many electrical applications that are important to society.	Electric current, and DC circuits end of topic assessments in the style of exam questions	
	 Students can construct circuits from the range of components. Investigation of the variation of resistance of a thermistor with temperature. 	Written and verbal feedback given throughout module through in-class activities and homework.	

 Students can investigate the behaviour of a potential divider circuit. Determination of resistivity of a wire using a micrometer, ammeter and voltmeter. Investigation of the emf and internal resistance of electric cells and batteries by measuring the variation of the terminal pd of the cell with current in it. 		